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LEITER TO THE EDITOR 

Some finite-size amplitudes and critical exponents for Potts 
and Ashkin-Teller quantum chains 

C J Hamert and M T Batchelor$§ 
t School of Physics, University of New South Wales, PO Box 1, Kensington, NSW 2033, 
Australia 
j Department of Theoretical Physics, Research School of Physical Sciences, The Australian 
National University, GPO Box 4, Canberra, ACT 2601, Australia 

Received 30 September 1987 

Abstract. Analytic expressions are derived for the leading finite-size corrections to a class 
of energy eigenvalues of the Potts and Ashkin-Teller quantum chains, making use of their 
equivalences with a modified XXZ Heisenberg chain. Assuming conformal invariance, 
exact results are thence obtained for some bulk scaling dimensions and surface exponents 
in these models. 

In a recent paper (Hamer et a1 1987, hereafter referred to as I) ,  analytic expressions 
were derived for the finite-size scaling amplitude of the ground-state energy in the 
quantum Potts and Ashkin-Teller chains, by making use of their equivalences with a 
modified X X Z  Heisenberg chain which can be solved by a Bethe ansatz (Alcaraz et 
a1 1987a, b, c). By conformal invariance, these amplitudes are related to the conformal 
anomalies of their respective models. In the present work, we extend these results to 
derive the finite-size amplitudes for a class of excited states and the associated critical 
exponents. 

The modified X X Z  Hamiltonian in question is 

where N is the number of sites, a:, a; and af are Pauli matrices acting at site i, and 
A = -cos y where y E [0 ,  n). The cases of interest are as follows. 

(A) p = p '  = 0, N' = N, with boundary conditions 

ah+, * i a k + l  =e '@(a : i i a r )  =a;. ( 2 )  
The eigenvalues of the critical q-state Potts Hamiltonian on an M-site lattice with 
periodic boundary conditions can be exactly related (Alcaraz er al 1987a, b) to those 
of chain A with N = 2 M sites, where cos y = f J q  and 

(B) N ' =  N - 1, free boundaries. The eigenvalues of the critical q-state Potts chain 
on M sites with free boundaries are related (Alcaraz et a1 1987a, b, c) to those of chain 
B with cos y = fdq, N = 2M, and p = - p ' =  i sin y. The eigenvalues of the critical 
Ashkin-Teller chain on M sites with free boundaries are also related to those of chain 
B with N = 2M, p = p ' = O ,  and the Ashkin-Teller coupling A =cos y. 

= 2y. 
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The derivation of the finite-size amplitudes for the ground state in cases A and B 
in I made use of the methods of Woynarovich and Eckle (1987), and may be paraphrased 
as follows (the corresponding equations in I are given in round brackets). The total 
number of down spins m in the chain is conserved, and the ground state lies in the 
sector rn = f N. The Bethe ansatz for the eigenstates involves a momentum p, for each 
down spin, but in the critical region a convenient change of variables is ( I ,  2.5) 

p = 2 tan-l[cot(iy) tanh A ]  = + ( A ,  i-y) ( - < A  Coo). (3) 
Then the Bethe ansatz equations for the roots A, corresponding to momenta pJ in cases 
A and B, respectively, may be written (Alcaraz et a1 1987a, b, c) 

I .  = j  j =  1, .  . . , m (7) 
and 

p '  - A - e'Y - p - A  - ely (B) (I, 3.4) e*"'= - 
( p - A ) e i Y - l  ( p ' - A ) e i Y - 1 '  

A function z N ( A )  can then be defined in which the roots are equally spaced, 
zN(Aj)=4/N, by 

Its derivative is denoted 

a,(h) = d.2" (A)/dA. 

When N goes to infinity, the roots A i  tend to a continuous distribution with density 
N"(A). Using the fact that 

m 

+'(A, y)  dA =2(7r-27) 

(where the prime denotes differentiation with respect to A ) ,  one obtains sum rules 

(A) (43.10) 
( B )  ( I ,  3.11). [ + (1, N)[3 -2( y + r+rf)/7i] dA a N ( A )  = 
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Let A+( -A- )  denote the root of largest (smallest) magnitude in A, then from (13 )  
and (14 )  one finds in case A 

X 1 V N ( A )  dA = ( 1 / 2 W ( l + P + )  

J -a) 

where 

while in case B A- = A+ = A and 

(B)  ( I ,3 .30 )  jTc,.,(A)dA = ( 1 / 2 N ) ( l + P )  

where 

2 

The energy of the system is 
m 

(A)  ( I ,  3 .5)  E = f N  cos y - sin y +'(Aj ,  4y)  
j -  1 

m 

(B)  ( J 3 . 6 )  E = f ( N - l ) c o s  y- [ f (p+p ' ) ] - s in  y 1 +'(Ai,$y). (20)  
j = 1  

Using the Euler-Maclaurin formula and a Wiener-Hopf integration, as in Woynarovich 
and  Eckle (1987),  one can then go through to obtain the following results. Defining 
the energy per site as eN = E / N ,  the leading finite-size correction to the ground-state 
energy per site as N + m  is found to be 

 sin y 3 T  
(A)  ( I ,  3.37) eN -e, = -~ 

6 yN2 

n 2 s i n  y 
(B)  ( J 3 . 3 8 )  e N - e x = - -  

24 yN2 N 

where fm is the surface energy in case B, discussed further in I. The next leading 
corrections are, for y f 0, 

(23 )  

(24 )  
while when y + 0 the next leading corrections are down by powers of (In N ) .  

We now want to consider an  almost trivial generalisation of the above results. 
Consider the ground states in different spin sectors of the chain, with finite values of 

(A) ( I ,  3.39) ( l / N 2 ) [ O ( N - ' ) + O ( N - 4 y " " - y '  ) I  
( B )  ( I ,  3 .40)  ( 1 / N 2 ) [ O ( N - ' ) + O ( N - ' y Y l ' x - y )  ) I  

n = $ N  - m. 

Then equations (13 )  and (14 )  are replaced by 
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and then the roots of largest magnitude are given by 

Following this, the treatment of I goes through unchanged, ending up with the leading 
finite-size correction to the ground-state energy per site in sector n as N + CO: 

r2 sin y 377 
(33) 

Note that the bulk limiting values e ,  and fm remain unchanged. The next leading 
corrections are of the same order as found above for n = 0. 

From equations (32) and (33) one easily obtains the mass gap between sector n 
and the overall ground state ( n  = 0) as 

(34) F E n )  = N( e:) - e$ ' )  

with result 

(A) F$'  - [ r sin y/ y (  r - y)N][  n2( r - y)*+f@'] 
N -m 

(35) 

(B)  F E )  N - ,  - (nr sin y / y N ) [ n ( r  - y ) +  7~ - ( y + r + r ) ] .  (36) 

Now the general form predicted for the mass gap by conformal invariance (Cardy 
1984a) is 

(A) FN = 2 r l x / N + O ( N - ' )  (37) 
for periodic boundary conditions, where x is the scaling dimension of the associated 
operator, and 5 is an overall scale factor (von Gehlen er a1 1986) which is independent 
of the boundary conditions and is known (Hamer 1985) to be 

< = r s i n  y / y  (38) 
for the X X Z  Hamiltonian (1). For the case of free boundaries, the corresponding 
relation is (Cardy 1984a) 

(B)  FN = T~x, /  N +0( N-') (39) 
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where x, is a surface scaling dimension. Assuming conformal invariance, then, one 
arrives at conclusions as follows. 

For the Ashkin-Teller model with periodic boundaries, the scaling dimension of 
the ‘spin-$ parafermion’ operator has been shown to correspond to the gap N (  e%)(@ = 
$ 7 ~ )  - e:’(@ = 0)) in case A by Alcaraz et a1 (1987a, b). Hence one finds from equations 
(29) and (32): 

l r - v  lr 
XPf(+) =-+ 

27r 3 2 ( ~ - y ) ‘  

This provides analytic confirmation of the numerical results of von Gehlen and 
Rittenberg (1987) and Alcaraz er a1 (1987a, b). Alcaraz et a1 (1987b) have also shown 
that the spin-; parafermion operator corresponds to the gap N ( e C ) ( @  = 3 ~ / 2 )  - 
e:)(@ = 0 ) ) .  From (29) and (32) we find 

3 -.ir-+ 9.n 
Xpf(z)-  257 32(7r- y )  

confirming their result. 
For the q-state Potts model with periodic boundaries, the scaling dimension of the 

magnetic operator corresponds to the gap N(e: ) (@ = T )  - e g ) ( @  = 2 y ) )  in case A, and 
hence one finds 

with cos y = $44. This confirms the numerical results of Alcaraz et a1 (1987a, b) and 
the identifications made by den Nijs (1983) and Dotsenko (1984). The Potts model 
also has parafermion operators (Fradkin and Kadanoff 1980, Nienhuis and Knops 
1985) with spin s = a / q  where (Y = 1, .  . . , q - 1. The corresponding mass gap has been 
shown by Alcaraz et a1 (1987b) to be N ( e c ) ( @  = 27ra/q) - e!:)(@ = 2y))  in case A, 
whence we find 

i7 - y+ (Y2T2 - q*y2 
x,f(a; 9 )  =- cos y = 4Jq 2 T  2.rrq2(7r- y )  (43) 

confirming their conclusion and in agreement with the results of Nienhuis and Knops 
(1985). 

For the case with free boundaries, case B, the gap F E )  is associated with a surface 
exponent x:”), which from (36), (38) and (39) is given by 

Xi”) = n 2 (  .n - y ) /  57 (44) 

for the X X Z  model itself, and also for the Ashkin-Teller model, since r = I” = f (  7r - y )  
in both cases. This confirms the numerical results of Alcaraz et a1 (1987~)  and von 
Gehlen and Rittenberg (1986, 1987). For the q-state Potts model, r’= .n -r, the 
corresponding result is 

x:’)= (i7 - 2 y ) / . n  cos y = y q  (45) 
in agreement with the numerical work of Alcaraz et a1 (1987~)  and the prediction of 
Cardy (1984b). 

To sum up, then, we have extended the work of I by deriving analytically the 
finite-size scaling amplitudes ‘for the lowest-lying state in each spin sector of the 



L178 Letter to the Editor 

modified X X Z  Hamiltonian (1). Using conformal invariance, this has allowed us to 
calculate exactly various critical scaling dimensions for the quantum Potts and  Ashkin- 
Teller chains. The results confirm previous numerical results and  theoretical conjec- 
tures. 

One would like to complete this work by calculating the finite-size scaling amplitudes 
corresponding to other excited states in the model. In general, such states will have 
complex roots in the A plane, whose positions are not known exactly, although they 
might perhaps be calculated using methods such as those of Woynarovich (1982) (see 
also Woynarovich 1987). We have not attempted such lengthy calculations. 

We would like to thank Dr Reinout Quispel and  Professor Michael Barber for helpful 
conversations and correspondence on this topic. 
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